28 research outputs found

    Global cropland nitrous oxide emissions in fallow period are comparable to growing-season emissions

    Get PDF
    This study was supported by the Youth Innovation Program of Chinese Academy of Agricultural Sciences (No. Y2023QC02), the National Natural Science Foundation of China (42225102, 42301059, 32172129, 42207378), the National Key Research and Development Program of China (2021YFD1700801, 2022YFD2300400), Technology Research System-Green manure (Grant No. CARS-22-G-16).Peer reviewedPostprin

    Persistent sulfate formation from London Fog to Chinese haze

    Get PDF
    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world

    Clutter Covariance Matrix Estimation for Radar Adaptive Detection Based on a Complex-Valued Convolutional Neural Network

    No full text
    In this paper, we address the problem of covariance matrix estimation for radar adaptive detection under non-Gaussian clutter. Traditional model-based estimators may suffer from performance loss due to the mismatch between real data and assumed models. Therefore, we resort to a data-driven deep-learning method and propose a covariance matrix estimation method based on a complex-valued convolutional neural network (CV-CNN). Moreover, a real-valued (RV) network with the same framework as the proposed CV network is also constructed to serve as a natural competitor. The obtained clutter covariance matrix estimation based on the network is applied to the adaptive normalized matched filter (ANMF) detector for performance assessment. The detection results via both simulated and real sea clutter illustrate that the estimator based on CV-CNN outperforms other traditional model-based estimators as well as its RV competitor in terms of probability of detection (PD)

    Interference Environment Model Recognition for Robust Adaptive Detection

    No full text

    Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    No full text
    Abstract-This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N

    Fabrication of Tissue-Engineered Cartilage Using Decellularized Scaffolds and Chondrocytes

    No full text
    In this paper, we aim to explore the application value of tissue engineering for the construction of artificial cartilage in vitro. Chondrocytes from healthy porcine articular cartilage tissue were seeded on articular cartilage extracellular matrix (ACECM) scaffolds and cultivated. Type II collagen immunofluorescent staining was used to assess secretion from the extracellular matrix. Chondrocytes, which were mainly polygonal and cobblestone-shaped, were inoculated on ACECM-oriented scaffolding for 7 days, and the neo-tissue showed translucent shape and toughness. Using inverted and fluorescence microscopy, we found that chondrocytes on the scaffolds performed well in terms of adhesion and growth, and they secreted collagen type II. Moreover, the porcine ACECM scaffolds had good biocompatibility. The inflammatory cell detection, cellular immune response assay and humoral immune response assay showed porcine ACECM scaffolds were used for xenotransplantation without significant immune inflammatory response. All these findings reveal that ACECM-oriented scaffold is an ideal natural biomaterial for cartilage tissue engineering

    Noninvasive Multiplexed Analysis of Bladder Cancer-Derived Urine Exosomes via Janus Magnetic Microspheres

    No full text
    Bladder cancer greatly endangers human health, and its early diagnosis is of vital importance. Exosomes, which contain proteins and nucleic acids related to their source cells, are expected to be an emerging biomarker for bladder cancer detection. Here, we propose a novel system for multiplexed analysis of bladder cancer-derived urine exosomes based on Janus magnetic microspheres as barcoded microcarriers. The microcarriers are constructed by droplet-templated coassembly of colloidal silica nanoparticles and magnetic nanoparticles under a magnetic field. The microcarriers possess one hemisphere with structural color and the other hemisphere with magneto-responsiveness. Benefiting from the unique structure, these Janus microcarriers could serve as barcodes and could move controllably in a sample solution, thus realizing the multiplex detection of exosomes with high sensitivity. Notably, the present platform is noninvasive since a urine specimen, as an ideal source of bladder cancer-derived exosomes, is employed as the sample solution. This feature, together with the good sensitivity, specificity, low sample consumption, and easy operation, indicates the great potential of the platform for bladder cancer diagnosis in clinical applications
    corecore